How can I fix this error in react native:
Error: Invalid hook call. Hooks can only be called inside of the body of a function component. This could happen for one of the following reasons:
- You might have mismatching versions of React and the renderer (such as React DOM)
- You might be breaking the Rules of Hooks
- You might have more than one copy of React in the same app
import { cameraWithTensors } from "@tensorflow/tfjs-react-native";import { Camera } from "expo-camera";import { StatusBar } from "expo-status-bar";import React, { useEffect, useState, useRef } from "react";import { StyleSheet, Text, View, Platform, Dimensions, LogBox,} from "react-native";import * as cocoSsd from "@tensorflow-models/coco-ssd";import { model } from "@tensorflow/tfjs";import * as tf from "@tensorflow/tfjs";import Canvas from "react-native-canvas";const TensorCamera = cameraWithTensors(Camera);const { width, height } = Dimensions.get("window");let context = useRef<CanvasRenderingContext2D>();let canvas = useRef<Canvas>();export default function App() { const [model, setModel] = useState<cocoSsd.ObjectDetection>(); let textureDims = Platform.OS === "ios" ? { height: 1920, width: 300 } : { height: 300, width: 300 }; function handleCameraStream(images: any) { const loop = async () => { const nextImageTensor = images.next().value; if (!model || !nextImageTensor) throw new Error("No model or image tensor"); model .detect(nextImageTensor) .then((predictions) => { drawRectangle(predictions, nextImageTensor); }) .catch((error) => { console.log(error); }); requestAnimationFrame(loop); }; loop(); } function drawRectangle( predictions: cocoSsd.DetectedObject[], nextImageTensor: any, ) { if (!context.current || !canvas.current) return; const scaleWidth = width / nextImageTensor.shape[1]; const scaleHeight = height / nextImageTensor.shape[0]; const flipHorizontal = Platform.OS == "ios" ? false : true; context.current.clearRect(0, 0, width, height); for (const prediction of predictions) { const [x, y, width, height] = prediction.bbox; const boundingBoxX = flipHorizontal ? canvas.current.width - x * scaleWidth - width * scaleWidth : x * scaleWidth; const boundingBoxY = y * scaleHeight; context.current.strokeRect( boundingBoxX, boundingBoxY, width * scaleWidth, height * scaleHeight, ); context.current.strokeText( prediction.class, boundingBoxX - 5, boundingBoxY - 5, ); } } async function handleCanvas(can: Canvas) { if (can) { can.width = width; can.height = height; const ctx: CanvasRenderingContext2D = can.getContext("2d"); ctx.strokeStyle = "red"; ctx.fillStyle = "red"; ctx.lineWidth = 3; context.current = ctx; canvas.current = can; } } useEffect(() => { (async () => { const { status } = await Camera.requestPermissionsAsync(); await tf.ready(); setModel(await cocoSsd.load()); })(); }, []); return (<View style={styles.container}><TensorCamera style={styles.camera} type={Camera.Constants.Type.back} cameraTextureHeight={textureDims.height} cameraTextureWidth={textureDims.width} resizeHeight={200} resizeDepth={3} onReady={handleCameraStream} autorender={true} useCustomShadersToResize={false} resizeWidth={0} /><Canvas style={styles.canvas} ref={handleCanvas} /></View> );}const styles = StyleSheet.create({ container: { flex: 1, backgroundColor: "#fff", }, camera: { width: "100%", height: "100%" }, canvas: { position: "absolute", zIndex: 1000000, width: "100%", height: "100", },});